Inhibition of Escherichia coli Glucosamine-6-phosphate Synthase by Reactive Intermediate Analogues
نویسندگان
چکیده
Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of D-glucosamine 6-phosphate from D-fructose 6-phosphate using L-glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. The most potent carbohydrate-based inhibitor of GlmS reported to date is 2-amino-2-deoxy-D-glucitol 6-phosphate, an analogue of the putative cis-enolamine intermediate formed during catalysis. The interaction of a series of structurally related cis-enolamine intermediate analogues with GlmS is described. Although arabinose oxime 5-phosphate is identified as a good competitive inhibitor of GlmS with an inhibition constant equal to 1.2 (60.3) mM, the presence of the amino function at the 2-position is shown to be important for potent inhibition. Comparison of the binding affinities of 2-deoxy-D-glucitol 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate indicates that the amino function contributes 24.1 (60.1) kcal/mol to the free energy of inhibitor binding. Similarly, comparison of the binding affinities of 2-deoxy-D-glucose 6-phosphate and D-glucosamine 6-phosphate indicates that the amino function contributes 23.0 (60.1) kcal/mol to the free energy of product binding. Interactions between GlmS and the 2-amino function of its ligands contribute to the uniform binding of the product and the cis-enolamine intermediate as evidenced by the similar contribution of the amino group to the free energy of binding of D-glucosamine 6-phosphate and 2-amino-2-deoxy-Dglucitol 6-phosphate, respectively.
منابع مشابه
Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis.
Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of D-glucosamine 6-phosphate from D-fructose 6-phosphate using L-glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. The most potent carbohydrate-based inhibitor...
متن کاملApplication of GFAT as a Novel Selection Marker to Mediate Gene Expression
The enzyme glutamine: fructose-6-phosphate aminotransferase (GFAT), also known as glucosamine synthase (GlmS), catalyzes the formation of glucosamine-6-phosphate from fructose-6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. For the first time, the GFAT gene was proven to possess a function as an effective selection marker for genetically modified (G...
متن کاملCoordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12.
The intracellular concentration of the enzyme glucosamine-6-phosphate synthase, encoded by the gene glmS in Escherichia coli, is repressed about threefold by growth on the amino sugars glucosamine and N-acetylglucosamine. This regulation occurs at the level of glmS transcription. It is not due just to the presence of intracellular amino sugar phosphates, because mutations which derepress the ge...
متن کاملTwo mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli.
The Escherichia coli uhp T gene encodes an active transport system for sugar phosphates. When the uhp T gene was carried on a multicopy plasmid, amplified levels of transport activity occurred, and growth of these strains was inhibited upon the addition of various sugar phosphates. Two different mechanisms for this growth inhibition were distinguished. Exposure to glucose-6-phosphate, fructose-...
متن کاملTwo Small RNAs Conserved in Enterobacteriaceae Provide Intrinsic Resistance to Antibiotics Targeting the Cell Wall Biosynthesis Enzyme Glucosamine-6-Phosphate Synthase
Formation of glucosamine-6-phosphate (GlcN6P) by enzyme GlcN6P synthase (GlmS) represents the first step in bacterial cell envelope synthesis. In Escherichia coli, expression of glmS is controlled by small RNAs (sRNAs) GlmY and GlmZ. GlmZ activates the glmS mRNA by base-pairing. When not required, GlmZ is bound by adapter protein RapZ and recruited to cleavage by RNase E inactivating the sRNA. ...
متن کامل